Variables type low_boundary int datatype high_boundary RESTRICTED of i

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
(* Variables *)
type low_boundary = int
datatype high_boundary = RESTRICTED of int | UNRESTRICTED
type var_spec = {
low: low_boundary,
high: high_boundary,
nesting: bool
}
type var_index = string
type var = var_spec * var_index
fun rigid (({high = UNRESTRICTED,...},_):var) = false
| rigid ({low = lo,high = RESTRICTED hi,...},_) = (lo = hi)
fun flex v = not (rigid v)
fun check_len (({low = lo, high = UNRESTRICTED, ...},_):var, len: int) =
(len >= lo)
| check_len (({low = lo, high = RESTRICTED hi, ...},_), len) =
(len >= lo) andalso (len <= hi)
(* Fractions *)
infix 6 !+! !-!
infix 7 !*! !/!
structure Frac
: sig
type fraction
val frac: int -> fraction
val numerator: fraction -> int
val denominator: fraction -> int
val !+! : fraction * fraction -> fraction
val !-! : fraction * fraction -> fraction
val !*! : fraction * fraction -> fraction
val !/! : fraction * fraction -> fraction
end =
struct
datatype fraction = FR of int * int
fun gcd (x,y) =
let
fun gcd' (a,b) =
let val r = a mod b in
if r = 0 then b else gcd' (b,r)
end
in gcd' (abs x,abs y) end
fun lcm (x,y) = abs(x * y) div gcd(x,y)
fun norm (_,0) = raise Div
| norm (0,_) = FR (0,1)
| norm (n,d) =
if d < 0 then norm(~n,~d)
else let val c = gcd(n,d) in FR (n div c,d div c) end
fun add_op ((n1,d1),(n2,d2)) f =
let
val d = lcm(d1,d2)
val n = f (n1*(d div d1),n2*(d div d2))
in norm (n,d) end
fun frac x = FR (x,1)
fun numerator (FR (n,_)) = n
fun denominator (FR (_,d)) = d
fun ((FR (n1,d1)) !+! (FR (n2,d2))) = add_op ((n1,d1),(n2,d2)) (op +)
fun ((FR (n1,d1)) !-! (FR (n2,d2))) = add_op ((n1,d1),(n2,d2)) (op -)
fun ((FR (n1,d1)) !*! (FR (n2,d2))) = norm (n1*n2,d1*d2)
fun ((FR (n1,d1)) !/! (FR (n2,d2))) = norm (n1*d2,d1*n2)
end
(* Refal core *)
signature ATOM = sig
type atom
val equal: (atom * atom) -> bool
end
datatype direction = LEFT | RIGHT
datatype attribute
= DIR of direction
| NOATTR
infixr :<:
infixr :>:
functor RefalCore (A: ATOM) = struct
(* Expressions *)
structure Expr
: sig
type expr
datatype term
= EX of expr
| AT of A.atom
| VAR of var
val :<: : expr * term -> expr
val :>: : term * expr -> expr
val empty: attribute -> expr
val length: expr -> int
val attr: expr -> attribute
val hd: direction -> expr -> term
val tl: direction -> expr -> expr
val explode: direction -> expr -> (term * expr)
val equal: (expr * expr) -> bool
val equalTerm: (term * term) -> bool
val check_var: (var * expr) -> bool
val split: direction -> (expr * int) -> (expr * expr)
val shift: direction -> (expr * expr) -> (expr * expr)
end =
struct
exception EmptyExpr
datatype expr = E of attribute * (term list)
and term
= EX of expr
| AT of A.atom
| VAR of var
fun ((E (at,e)) :<: t) = E (at,e @ [t])
fun (t :>: (E (at,e))) = E (at,t::e)
fun empty at = E (at,[])
fun length (E (_,e)) = List.length e
fun attr (E (at,_)) = at
fun hd dir (E (_,[])) = raise EmptyExpr
| hd LEFT (E (_,(t::_))) = t
| hd RIGHT (E (_,ts)) = List.last ts
fun tl dir (E (_,[])) = raise EmptyExpr
| tl LEFT (E (at,(_::ts))) = E (at,ts)
| tl RIGHT (E (at,e)) = E (at,List.take (e,List.length e - 1))
fun explode dir ex = (hd dir ex, tl dir ex)
fun equal (E (at1,e1),E (at2,e2)) =
let
fun eq ([],[]) = true
| eq (t1::e1,t2::e2) =
if equalTerm (t1,t2) then eq(e1,e2) else false
| eq _ = false
in
if at1 = at2 then eq (e1,e2) else false
end
and equalTerm (EX e1,EX e2) = equal (e1,e2)
| equalTerm (AT a1,AT a2) = A.equal (a1,a2)
| equalTerm (VAR v1,VAR v2) = (v1 = v2)
| equalTerm _ = false
fun check_var (({low = lo, high = hi, nesting = ne},_), E (_,e)) =
let
val l = List.length e
fun ck_nesting [] = true
| ck_nesting ((EX x)::xs) = false
| ck_nesting (x::xs) = ck_nesting xs
in
(lo <= l) andalso
(case hi
of RESTRICTED h => (l <= h)
| UNRESTRICTED => true
) andalso (ne orelse ck_nesting e)
end
fun split RIGHT (ex,n) =
let val (e1,e2) = split LEFT (ex,(length ex) - n) in (e2,e1) end
| split LEFT (E (at,e),n) =
(E (at,List.take (e,n)), E (at,List.drop (e,n)))
fun shift LEFT (e1,e2) = (e1 :<: (hd LEFT e2), tl LEFT e2)
| shift RIGHT (e1,e2) = ((hd RIGHT e2) :>: e1, tl RIGHT e2)
end
(* Substitutions *)
structure Sub = struct
exception UnknownIndex;
exception DuplicateIndex;
abstype subst = SUB of (var * Expr.expr) list
with
val empty = SUB []
fun toList (SUB vs) = vs
fun contains (SUB vs) v = List.exists (fn (x,_) => x = v) vs
fun value (SUB []) v = raise UnknownIndex
| value (SUB ((v',expr)::vs)) v =
if v = v' then expr else value (SUB vs) v
fun add (sub as (SUB vs)) (v,expr) =
if contains sub v
then if Expr.equal(value sub v,expr)
then sub else raise DuplicateIndex
else SUB ((v,expr)::vs)
end
end
(* Pattern matching *)
datatype result
= SUCCESS of Sub.subst
| UNDEF
local open Expr in
fun match (G,[]) = SUCCESS G
| match (G,L_M) = search (G,[],L_M)
and search (G,X,(A,B)::Y) =
let
fun matchRigidVar dir (v as (spc,_),A') = //переменная ограниченная по длине
if (#low spc) > (length B) then UNDEF
else
let val (Z,B') = split dir (B,#low spc) in //откусываем кусок из терма в выражении
if Sub.contains G v
then if equal(Z,Sub.value G v) //сравниваем что откусили с тем что уже есть в подстановке
then match (G, X @ [(A',B')] @ Y) //без этого совпадения матчим дальше
else UNDEF
else if check_var (v,Z) //можно ли добавить совпадение
then match (Sub.add G (v,Z), X @ [(A',B')] @ Y) //матчим с добавленным совпадением
else UNDEF
end
fun matchRepeatedFlexVar dir (V,A') =
if (length V) > (length B) then UNDEF
else let val (V',B') = split dir (B,length V) in
if equal (V,V') then match (G, X @ [(A',B')] @ Y) else UNDEF //проверка что то чему была ранее сопоставлена переменная находится в объектном выражении на текущей позиции
end
fun matchHard dir (VAR v,A'') =
if rigid v then matchRigidVar dir (v,A'') //если переменная повторная и ограниченная по длине
else matchRepeatedFlexVar dir (Sub.value G v,A'') //переменная повторная но не ограниченная по длине
| matchHard dir (t,A'') = //слева терм(не переменная)
if (length B = 0) then UNDEF else
case (t, explode dir B)
of (EX A',(EX B',B'')) => //и там и там слева выражение
if dir = LEFT then match (G, X@[(A',B'),(A'',B'')]@Y)
else match (G, X@[(A'',B''),(A',B')]@Y)
| (AT Z,(AT Z',B'')) =>
if A.equal(Z,Z') then match (G, X@[(A'',B'')]@Y) //и там и там одинаковый атом
else UNDEF
| _ => UNDEF
fun matchClosedFlexVar (VAR v) = //на вход переменная длины 1
if check_var (v,B) then match (Sub.add G (v,B), X@Y) else UNDEF //добавляем подстановку, убираем из списков этот элемент
fun unboundFlex (VAR v) = (flex v) andalso not (Sub.contains G v)
| unboundFlex _ = false
in
if (length A) = 0
then if (length B) = 0 then search (G,X,Y) else UNDEF //поиск если пустой терм в образце и в выражении
else
case (length A, unboundFlex(hd LEFT A), unboundFlex(hd RIGHT A)) //длина терма в образце, являются ли первый и последний элемент неограниченным и не проматченным
of (1,true,true) => matchClosedFlexVar (hd LEFT A) //терм в образце длины 1, матчим переменную длины 1
| (_,true,true) => search (G,X @ [(A,B)],Y) //терм - выражение, перенос в левый список
| (_,_,false) => matchHard RIGHT (explode RIGHT A) //последняя переменная ограниченная, разбиваем на последний элемент и кусок списка без последнего элемента
| (_,false,_) => matchHard LEFT (explode LEFT A) //первая переменная ограниченнаяб разбиваем на голову и хвост
end
| search (G,(p,B)::Y,[]) = //справа список пустой
let
val (DIR dir) = attr p //направление для первого терма из образца
val (VAR (v as (spc,_)), A) = explode dir p //разбиваем образец на первый и хвост
fun iterate (Bk,Ck) =
case match (Sub.add G (v,Bk), [(A,Ck)] @ Y) // добавляем отображение, A и Ck соответствующие хвосты
of UNDEF => if (length Ck) = 0 then UNDEF
else iterate (shift dir (Bk,Ck))
| Gk => Gk //???
in
if (#low spc) > (length B) then UNDEF //первый терм образца длиннее первого терма выражения
else iterate (split dir (B,#low spc)) //разбиваем терм выражения по нижней границе переменной
end
end
end
(******************************************************************************)
(* Functor implementations *)
datatype r5atom
= CHAR of char
| WORD of string
| INTEGER of int
structure R5Atom: ATOM =
struct
type atom = r5atom
fun equal (a,b) = (a = b)
end
structure R5Core = RefalCore(R5Atom)
(* Pretty-printers *)
structure RefalPP
: sig
val install: unit -> unit
end =
struct
open Compiler
open PrettyPrint
fun pp_var_spec pps { low = 0, high = UNRESTRICTED, nesting = true } =
add_string pps "e"
| pp_var_spec pps { low = 1, high = UNRESTRICTED, nesting = true } =
add_string pps "v"
| pp_var_spec pps { low = 1, high = RESTRICTED 1, nesting = false } =
add_string pps "s"
| pp_var_spec pps { low = 1, high = RESTRICTED 1, nesting = true } =
add_string pps "t"
| pp_var_spec pps { low = lo, high = hi, nesting = ns } =
let
val hiStr =
case hi
of RESTRICTED h => Int.toString h
| _ => "*"
in
add_string pps ("[" ^ (Int.toString lo) ^ "," ^ hiStr ^ "," ^
(Bool.toString ns) ^ "]")
end
fun pp_var pps (s,i) = (pp_var_spec pps s; add_string pps ("." ^ i))
fun pp_r5atom pps (CHAR c) = add_string pps ("'" ^ (Char.toString c) ^ "'")
| pp_r5atom pps (WORD s) = add_string pps ("\"" ^ s ^ "\"")
| pp_r5atom pps (INTEGER i) = add_string pps (Int.toString i)
fun pp_frac pps x =
let val n = Frac.numerator x and d = Frac.denominator x in (
add_string pps (Int.toString n);
if d = 1 then () else add_string pps ("/" ^ (Int.toString d))
)
end
local open Matrix in
fun pp_matrix pps matr =
let
val (m,n) = size matr
val la = labelArray matr
val i = ref 0 and j = ref 0
in
add_string pps ("Matrix ("^(Int.toString m)^","^(Int.toString n)^")");
add_newline pps;
begin_block pps CONSISTENT 2;
while !j < n do (
case Array.sub(la,!j)
of VAR_LABEL ind => add_string pps ("(" ^ ind ^ ")")
| ARG_LABEL n => add_string pps ("[" ^ (Int.toString n) ^ "]")
| FREE_LABEL => add_string pps "f";
j := !j + 1
);
add_newline pps;
while !i < m do (
j := 0;
while !j < n do (
pp_frac pps (sub (matr,!i,!j));
add_string pps " ";
j := !j + 1
);
if !i < (m-1) then add_newline pps else ();
i := !i + 1
);
end_block pps
end
end
local open R5Core.Expr in
fun pp_r5expr pps expr =
let
fun pp e =
if length e = 0 then ()
else (
pp_r5term pps (hd LEFT e);
if (length (tl LEFT e) = 0) then ()
else (
add_string pps " ";
pp (tl LEFT e)
)
)
in
case attr expr
of (DIR LEFT) => add_string pps "$L "
| (DIR RIGHT) => add_string pps "$R "
| _ => ();
pp expr
end
and pp_r5term pps (EX e) = (
add_string pps "(";
pp_r5expr pps e;
add_string pps ")"
)
| pp_r5term pps (AT a) = pp_r5atom pps a
| pp_r5term pps (VAR v) = pp_var pps v
end
local open R5Core.Sub in
fun pp_r5subst pps sub =
let
fun pp_varexpr (v,e) = (
add_string pps "(";
pp_var pps v;
add_string pps " => ";
pp_r5expr pps e;
add_string pps ")"
)
fun pp [] = ()
| pp (x::[]) = pp_varexpr x
| pp (x::xs) = (pp_varexpr x; add_string pps ", "; pp xs)
in
(add_string pps "["; pp (toList sub); add_string pps "]")
end
end
local open R5Core in
fun pp_result pps (SUCCESS sub) = pp_r5subst pps sub
| pp_result pps UNDEF = add_string pps "UNDEF"
end
fun install () = (
PPTable.install_pp ["r5atom"] pp_r5atom;
PPTable.install_pp ["Frac","fraction"] pp_frac;
PPTable.install_pp ["Matrix","matrix"] pp_matrix;
PPTable.install_pp ["R5Core","Expr","expr"] pp_r5expr;
PPTable.install_pp ["R5Core","Sub","subst"] pp_r5subst;
PPTable.install_pp ["R5Core","result"] pp_result
)
end
(* Debugging pm *)
open R5Core
open Expr
val E = { low = 0, high = UNRESTRICTED, nesting = true }
val V = { low = 1, high = UNRESTRICTED, nesting = true }
val S = { low = 1, high = RESTRICTED 1, nesting = false }
val T = { low = 1, high = RESTRICTED 1, nesting = true }
val e'1 = VAR (E,"1")
val e'2 = VAR (E,"2")
val e'3 = VAR (E,"3")
val e'4 = VAR (E,"4")
val e'w = VAR (E,"w")
val v'1 = VAR (V,"1")
val v'2 = VAR (V,"2")
val s'1 = VAR (S,"1")
val s'2 = VAR (S,"2")
val t'1 = VAR (T,"1")
val t'2 = VAR (T,"2")
fun wrd w = (AT (WORD w))
fun intgr i = (AT (INTEGER i))
val lpat = e'1 :>: (wrd "+") :>: e'2 :>: empty (DIR LEFT)
val rpat = e'1 :>: (wrd "+") :>: e'2 :>: empty (DIR RIGHT)
val expr = (intgr 1) :>: (intgr 2) :>: (wrd "+") :>:
(intgr 3) :>: (intgr 4) :>: (wrd "+") :>: (intgr 5) :>: empty NOATTR
val pat2 = e'1 :>: (wrd "+") :>:
(EX (e'1 :>: e'2 :>: (wrd "|") :>: e'3 :>: empty (DIR RIGHT))) :>:
empty (DIR LEFT)
val expr2 = (intgr 1) :>: (intgr 2) :>: (wrd "+") :>:
(EX ((intgr 1) :>: (intgr 2) :>: (intgr 3) :>: (wrd "|") :>:
(intgr 4) :>: (intgr 5) :>: (wrd "|") :>: (intgr 6) :>: (intgr 7) :>:
(intgr 8) :>: empty NOATTR)) :>: empty NOATTR
fun test (p,e) = match (Sub.empty,[(p,e)])
(* Debugging gauss *)
open Matrix
open Frac
val m = matrix (5, [VAR_LABEL "1", VAR_LABEL "2", VAR_LABEL "3",
VAR_LABEL "4", ARG_LABEL 0, FREE_LABEL])
fun tm () = (
RefalPP.install();
update (m,0,0,frac 1);
update (m,0,1,frac 1);
update (m,0,2,frac 1);
update (m,0,4,(frac 0) !-! (frac 1));
update (m,0,5,frac 2);
update (m,1,0,frac 1);
update (m,1,3,(frac 0) !-! (frac 1));
update (m,1,5,(frac 0) !-! (frac 1));
update (m,2,0,frac 1);
update (m,2,3,(frac 0) !-! (frac 1));
update (m,2,5,(frac 0) !-! (frac 1));
update (m,3,3,frac 1);
update (m,3,5,(frac 0) !-! (frac 2));
update (m,4,0,frac 1);
update (m,4,3,(frac 0) !-! (frac 1));
update (m,4,5,(frac 0) !-! (frac 1))
)