# from typing import List import math from data import from matplotlib i

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 from typing import List import math from data import * from matplotlib import pyplot COSTS = [24, 32, 110] def main(): a1, b1 = part1(False) print("______________________") a2, b2 = part2(False) print("______________________") a31, b31, a32, b32, a33, b33 = part3(False) print("______________________") # Intermediate values total = 857.038 ksi1 = a1 * (total ** b1) ksi3 = (ksi1 / a2) ** (1 / b2) ksi4 = (ksi3 / a31) ** (1 / b31) ksi5 = (ksi3 / a32) ** (1 / b32) ksi6 = (ksi3 / a33) ** (1 / b33) count_tickets = [260.111, 126.387, 129.43] count_tickets_sum = 0 for count in count_tickets: count_tickets_sum += count # n n = [ksi4, ksi5, ksi6] # p p = [] for count in count_tickets: p.append(count / count_tickets_sum) # Cost all tickets cost_all_tickets = 0 for i in range(len(n)): cost_all_tickets += n[i] * p[i] * COSTS[i] # Average n_sum = 0 for num in n: n_sum += num average = cost_all_tickets / n_sum # Total revenue total_revenue = total * 1000 * average print("Cost all tickets, average, total revenue:") print(cost_all_tickets, average, total_revenue) def part1(display=False) -> (float, float): rows = len(data1) cols = len(data1[0]) xs = [] ys = [] test_xs = [] test_ys = [] for i in range(0, cols, 2): for j in range(rows): if j % 2 == 0: xs.append(data1[j][i] * 1000) ys.append(data1[j][i + 1] * 1000) else: test_xs.append(data1[j][i] * 1000) test_ys.append(data1[j][i + 1] * 1000) alpha, beta = calc_dependency(xs, ys) print("Alpha 1, beta 1:") print(alpha, beta) if display: display_test(alpha, beta, test_xs, test_ys) check(test_xs, test_ys, alpha, beta, 0.1) return alpha, beta def part2(display=False) -> (float, float): rows = len(data2) cols = len(data2[0]) xs = [] ys = [] test_xs = [] test_ys = [] for i in range(0, cols, 2): for j in range(0, rows, 3): x = data2[j][i] * 1000 y = data2[j][i + 1] * 1000 if x > 0 and y > 0: if j % 6 == 0: xs.append(x) ys.append(y) else: test_xs.append(x) test_ys.append(y) alpha, beta = calc_dependency(xs, ys) print("Alpha 2, beta 2:") print(alpha, beta) if display: display_test(alpha, beta, test_xs, test_ys) check(test_xs, test_ys, alpha, beta, 0.1) return alpha, beta def part3(display=False) -> (float, float, float, float, float, float): rows = 72 cols = len(data3[0]) ts = [] xs = [] ys = [] zs = [] test_ts = [] test_xs = [] test_ys = [] test_zs = [] for i in range(0, cols, 2): for j in range(0, rows, 3): if i < cols - 4: ts.append(data3[j][i]) xs.append(data3[j][i + 1]) ys.append(data3[j + 1][i + 1]) zs.append(data3[j + 2][i + 1]) else: test_ts.append(data3[j][i]) test_xs.append(data3[j][i + 1]) test_ys.append(data3[j + 1][i + 1]) test_zs.append(data3[j + 2][i + 1]) alpha1, beta1 = calc_dependency(ts, xs) alpha2, beta2 = calc_dependency(ts, ys) alpha3, beta3 = calc_dependency(ts, zs) print("Alpha 31, 32, 33; beta 31, 32, 33:") print(alpha1, beta1) print(alpha2, beta2) print(alpha3, beta3) if display: display_test(alpha1, beta1, test_ts, test_xs) display_test(alpha2, beta2, test_ts, test_ys) display_test(alpha3, beta3, test_ts, test_zs) check(test_ts, test_xs, alpha1, beta1, 0.1) check(test_ts, test_ys, alpha2, beta2, 0.1) check(test_ts, test_zs, alpha3, beta3, 0.1) return alpha1, beta1, alpha2, beta2, alpha3, beta3 def display_test(alpha: float, beta: float, x1: List[float], x2: List[float]): dep_x1 = [] for x in x2: dep_x1.append(alpha * pow(x, beta)) pyplot.plot(x1, x2, "ro", dep_x1, x2, "bo") pyplot.show() def calc_dependency(x1: List[float], x2: List[float]) -> (float, float): assert (len(x1) == len(x2)) ln_x1 = [] ln_x2 = [] for i in range(len(x1)): ln_x1.append(math.log(x1[i])) ln_x2.append(math.log(x2[i])) m1 = calc_m(ln_x1) m2 = calc_m(ln_x2) d1 = calc_d(ln_x1) d2 = calc_d(ln_x2) beta = math.sqrt(d1 / d2) alpha = math.exp(m1 - beta * m2) return alpha, beta def check(x1: List[float], x2: List[float], alpha: float, beta: float, eps: float) -> bool: def f(x, alpha, beta): #print("Test: " + str(x) + ", " + str(alpha) + ", " + str(beta) + " => " + str(1 - math.exp(-alpha * pow(x / 1000, beta)))) return 1 - math.exp(-alpha * pow(x / 1000, beta)) dep_x1 = [] for x in x2: dep_x1.append(alpha * pow(x, beta)) f_x1 = [] f_dep_x1 = [] for i in range(len(x1)): f_x1.append(f(x1[i] / 2, alpha, beta)) f_dep_x1.append(f(dep_x1[i] / 2, alpha, beta)) #min_value = abs(min(x1) - min(dep_x1)) #max_value = abs(max(x1) - max(dep_x1)) # #error = max_value - min_value error = 0 for i in range(len(x1)): error = max(error, abs(f_x1[i] - f_dep_x1[i])) print("Error: " + str(error)) satisfied = error < eps if satisfied: print("Satisfied") else: print("Not satisfied") return satisfied def calc_m(xs: List[float]) -> float: acc = 0 for x in xs: acc += x return acc / len(xs) def calc_d(xs: List[float]) -> float: m = calc_m(xs) ys = [] for x in xs: ys.append(pow(x - m, 2)) return calc_m(ys) main()