недоделанная интерполяция алгоритмом из книги

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
require 'matrix'
require 'bigdecimal'
require 'mathn'
print("regular mesh\n")
Delaunay = [[[0.0, 0.0, 10.0], [0.0, 800.0, 10.0], [160.0, 280.0, 200.0]], [[800.0, 800.0, 10.0], [800.0, 0.0, 10.0], [600.0, 280.0, 100.0]], [[800.0, 0.0, 10.0], [0.0, 0.0, 10.0], [600.0, 280.0, 100.0]], [[0.0, 800.0, 10.0], [800.0, 800.0, 10.0], [440.0, 600.0, 300.0]], [[440.0, 600.0, 300.0], [600.0, 280.0, 100.0], [160.0, 280.0, 200.0]], [[600.0, 280.0, 100.0], [0.0, 0.0, 10.0], [160.0, 280.0, 200.0]], [[800.0, 800.0, 10.0], [600.0, 280.0, 100.0], [440.0, 600.0, 300.0]], [[160.0, 280.0, 200.0], [0.0, 800.0, 10.0], [440.0, 600.0, 300.0]]]
num_tri = Delaunay.length
def point_seg(s1, s2, p)
u = [s2[0] - s1[0], s2[1] - s1[1]] #s1s2
v = [p[0] - s1[0], p[1] - s1[0]] #s1p
#print "u = ", u, " v = ", v, "\n"
cross = u[0] * v[1] - v[0] * u[1]
if cross == 0
if (((s1[0] - p[0]) * (s2[0] - p[0])) <= 0) && (((s1[1] - p[1]) * (s2[1] - p[1])) <= 0)
#print "on edge\n"
return true
else
return false
end
else
return false
end
end
def inside_tri(tri, p)
a = tri[0]
b = tri[1]
c = tri[2]
m = (a[0] - p[0]) * (b[1] - a[1]) - (b[0] - a[0]) * (a[1] - p[1])
n = (b[0] - p[0]) * (c[1] - b[1]) - (c[0] - b[0]) * (b[1] - p[1])
k = (c[0] - p[0]) * (a[1] - c[1]) - (a[0] - c[0]) * (c[1] - p[1])
#print "m: ", m, "n: ", n, "k: ", k, "\n"
if ((m > 0) && (n > 0) && (k > 0)) || ((m < 0) && (n < 0) && (k < 0)) || (m == 0) || (n == 0) || (k == 0)
#print "inside\n"
return true
end
return false
end
def in_tri(tri, p)
#print tri, "\n"
if point_seg(tri[0], tri[1], p)
#point on seg 0-1
return [true, 0]
elsif point_seg(tri[1], tri[2], p)
#point on seg 1-2
return [true, 1]
elsif point_seg(tri[0], tri[2], p)
#point on seg 0-2
return [true, 2]
elsif inside_tri(tri, p)
return [true, 3]
end
return [false, -1]
end
def dist(x0, y0, x1, y1)
return Math.sqrt((x1 - x0) ** 2 + (y1 - y0) ** 2)
end
def polsum(x0, y0, x1, y1, x2, y2)
a = dist(x0, y0, x1, y1)
b = dist(x1, y1, x2, y2)
c = dist(x0, y0, x2, y2)
return (a + b + c)/2.0
end
def sq(x0, y0, x1, y1, p1, p2)
pols = polsum(x0, y0, x1, y1, p1, p2)
a = dist(x0, y0, x1, y1)
b = dist(x1, y1, p1, p2)
c = dist(x0, y0, p1, p2)
return Math.sqrt(pols * (pols - a) * (pols - b) * (pols - c))
end
def ro(x0, y0, x1, y1, p1, p2)
sqr = sq(x0, y0, x1, y1, p1, p2)
a = dist(x0, y0, x1, y1)
return (2 * sqr) / a
end
def count_rec(tr_ind, p, triang)
#tr = triang[tr_ind]
tr = Marshal.load(Marshal.dump(triang[tr_ind]))
v0 = tr[0]
v1 = tr[1]
v2 = tr[2]
#count distance between point and each edge
r0 = ro(v0[0], v0[1], v1[0], v1[1], p[0], p[1])
r1 = ro(v1[0], v1[1], v2[0], v2[1], p[0], p[1])
r2 = ro(v0[0], v0[1], v2[0], v2[1], p[0], p[1])
rarr = [r0, r1, r2]
#min less then delta found height, else find max and divide
minind = 0
minval = rarr[minind]
maxind = 0
maxval = rarr[maxind]
for i in (1 .. 2)
if rarr[i] < minval
minind = i
minval = rarr[i]
end
if rarr[i] > maxval
maxind = i
maxval = rarr[i]
end
end
if (minval < 10)
#count height
else
#delete old triangle, build 2 new, find in which triangle point lie and run search from tis triangle
triang.delete_at(tr_ind)
if (maxind == 0)
tr1 = [v0, v2, []]
end
def count_tri(tr_ind, p, triang)
interp = count_rec(tr_ind, p, triang)
#return value in p
return (first * secondi * third).element(0, 0)
end
#create grid
LOW = 0
HIGH = 800
kol = 8
step = (HIGH - LOW)/kol
print "step: ", step, "\n"
grid = Hash.new
npx = []
npy = []
npz = []
#i = 0
#j = 0
for i in (0 .. kol)
for j in (0 .. kol)
#print "i: ", i, "j: ", j, " istep ", i * step, " jstep ", j * step, "\n"
#print "will write: ", [i * step, j * step, 0], "\n"
grid[[i, j]] = [i * step, j * step]
#print "current grid: ", grid, "\n"
#j += 1
end
#i += 1
end
print "end grid: \n", grid, "\n"
for i in (0 .. kol)
for j in (0 .. kol)
#проходим в цикле по треугольникам, проверяем лежит ли точка внутри, если нет,
#проверяем лежит ли на каком то ребре,
#когда нашли где находится точка, то выполняем расчет
cur_p = grid[[i, j]]
for k in (0 .. (Delaunay.length - 1))
#print "ex cur_p: ", cur_p, "\n"
#print "ex in k ", k, "\n"
cur_tri = Delaunay[k]
#print "cur_p: ", cur_p, "\n"
res = in_tri(cur_tri, cur_p)
if res[0]
#посчитать высоту
#print "in k ", k, " triangle: ", cur_tri, "\n"
grid[[i, j]] = [grid[[i, j]][0], grid[[i, j]][1], count_tri(k, cur_p, Marshal.load(Marshal.dump(Delaunay)))]
npx += [grid[[i, j]][0]]
npy += [grid[[i, j]][1]]
npz += [grid[[i, j]][2]]
break
end
end
end
end
#print "grid with z: ", grid, "\n"
#grid.each { |key,value| print "vertex(", value[0], ", ", value[1], ", ", value[2], ")\n" }
#for i in (0 .. 66)
# print "vertex(", npx[i], ", ", npy[i], ", ", npz[i], ");\n"
#end
#print npx.length, "\n", npy.length, "\n", npz.length, "\n"
print npx, "\n"
print npy, "\n"
print npz, "\n"
#q = Marshal.load(Marshal.dump(Delaunay))
#print "oldD ", Delaunay, "\n"
#q[0][0][0] = 10000
#print "newq ", q, "\n"
#print "newD ", Delaunay, "\n"
=begin
print "test plot\n"
npxx = []
npyy = []
npzz = []
for i in Delaunay
npxx += i[0]
npyy += i[1]
npzz += i[2]
end
print npxx.length, npyy.length, npzz.length, "\n"
print npxx, "\n"
print npyy, "\n"
print npzz, "\n"
=end