from math import sqrt
critics = {'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
def sim_distance(prefs, person1, person2):
# Get the list of shared items
si = {}
for item in prefs[person1]:
if item in prefs[person2]:
si[item] = 1
# if they have no rating in common, return 0
if len(si) == 0:
return 0
# Add up the squaresof all the differences
sum_of_squares = sum(pow(prefs[person1][item] - prefs[person2][item], 2)
for item in prefs[person1] if item in prefs[person2])
return 1/(1+sum_of_squares)
def sim_pearson(prefs,p1,p2):
# Get the list of mutually rated items
si={}
for item in prefs[p1]:
if item in prefs[p2]: si[item]=1
n=len(si)
if n==0: return 0
sum1=sum([prefs[p1][it] for it in si])
sum2=sum([prefs[p2][it] for it in si])
sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
sum2Sq=sum([pow(prefs[p2][it],2) for it in si])
pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])
num=pSum-(sum1*sum2/n)
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den==0: return 0
r=num/den
return r
def topMatches(prefs, person, n=5, similarity=sim_pearson):
scores = [(similarity(prefs, person, other), other)
for other in prefs if other != person]
scores.sort()
scores.reverse()
return scores[0:n]
def getRecommendations(prefs, person, similarity=sim_pearson):
totals = {}
simSums = {}
for other in prefs:
if other == person: continue
sim = similarity(prefs, person, other)
if sim <= 0: continue
for item in prefs[other]:
if item not in prefs[person] or prefs[person][item] == 0:
totals.setdefault(item, 0)
totals[item] += prefs[other][item] * sim
simSums.setdefault(item, 0)
simSums[item] += sim
rankings = [(totals/simSums[item], item) for (item, totals) in totals.items()]
rankings.sort()
rankings.reverse()
return rankings
def transformPrefs(prefs):
result = {}
for person in prefs:
for item in prefs[person]:
result.setdefault(item, {})
result[item][person] = prefs[person][item]
return result
def calculateSimiliarItems(prefs, n=10):
result = {}
itemPrefs = transformPrefs(prefs)
c = 0
for item in itemPrefs:
c += 1
if c % 100 == 0:
print "%d / %d" % (c, len(itemPrefs))
scores = topMatches(itemPrefs, item, n=n, similarity=sim_distance)
result[item] = scores
return result
def getRecommendedItems(prefs, itemMatch, user):
userRatings = prefs[user]
scores = {}
totalSim = {}
for (item, rating) in userRatings.items():
for (similarity, item2) in itemMatch[item]:
if item2 in userRatings: continue
scores.setdefault(item2, 0)
scores[item2] += similarity * rating
totalSim.setdefault(item2, 0)
totalSim[item2] += similarity
rankings = [(score/totalSim[item], item) for item,score in scores.items()]
rankings.sort()
rankings.reverse()
return rankings
def loadMovieLens(path='/home/xa4a/merc/c_i/ml-data'):
movies = {}
for line in open(path + '/u.item'):
(id, title) = line.split('|')[0:2]
movies[id] = title
prefs = {}
for line in open(path + '/u.data'):
(user, movieid, rating, ts) = line.split('\t')
prefs.setdefault(user,{})
prefs[user][movies[movieid]] = float(rating)
return prefs