package qora crypto Ported from to Java by Dmitry Skiba sahn0 23 02 08

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
package qora.crypto;
/* Ported from C to Java by Dmitry Skiba [sahn0], 23/02/08.
* Original: http://cds.xs4all.nl:8081/ecdh/
*/
/* Generic 64-bit integer implementation of Curve25519 ECDH
* Written by Matthijs van Duin, 200608242056
* Public domain.
*
* Based on work by Daniel J Bernstein, http://cr.yp.to/ecdh.html
*/
final public class Curve25519 {
/* key size */
public static final int KEY_SIZE = 32;
/* 0 */
public static final byte[] ZERO = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* the prime 2^255-19 */
public static final byte[] PRIME = {
(byte)237, (byte)255, (byte)255, (byte)255,
(byte)255, (byte)255, (byte)255, (byte)255,
(byte)255, (byte)255, (byte)255, (byte)255,
(byte)255, (byte)255, (byte)255, (byte)255,
(byte)255, (byte)255, (byte)255, (byte)255,
(byte)255, (byte)255, (byte)255, (byte)255,
(byte)255, (byte)255, (byte)255, (byte)255,
(byte)255, (byte)255, (byte)255, (byte)127
};
/* group order (a prime near 2^252+2^124) */
public static final byte[] ORDER = {
(byte)237, (byte)211, (byte)245, (byte)92,
(byte)26, (byte)99, (byte)18, (byte)88,
(byte)214, (byte)156, (byte)247, (byte)162,
(byte)222, (byte)249, (byte)222, (byte)20,
(byte)0, (byte)0, (byte)0, (byte)0,
(byte)0, (byte)0, (byte)0, (byte)0,
(byte)0, (byte)0, (byte)0, (byte)0,
(byte)0, (byte)0, (byte)0, (byte)16
};
/********* KEY AGREEMENT *********/
/* Private key clamping
* k [out] your private key for key agreement
* k [in] 32 random bytes
*/
public static void clamp(byte[] k) {
k[31] &= 0x7F;
k[31] |= 0x40;
k[ 0] &= 0xF8;
}
/* Key-pair generation
* P [out] your public key
* s [out] your private key for signing
* k [out] your private key for key agreement
* k [in] 32 random bytes
* s may be NULL if you don't care
*
* WARNING: if s is not NULL, this function has data-dependent timing */
public static void keygen(byte[] P, byte[] s, byte[] k) {
clamp(k);
core(P, s, k, null);
}
/* Key agreement
* Z [out] shared secret (needs hashing before use)
* k [in] your private key for key agreement
* P [in] peer's public key
*/
public static void curve(byte[] Z, byte[] k, byte[] P) {
core(Z, null, k, P);
}
/********* DIGITAL SIGNATURES *********/
/* deterministic EC-KCDSA
*
* s is the private key for signing
* P is the corresponding public key
* Z is the context data (signer public key or certificate, etc)
*
* signing:
*
* m = hash(Z, message)
* x = hash(m, s)
* keygen25519(Y, NULL, x);
* r = hash(Y);
* h = m XOR r
* sign25519(v, h, x, s);
*
* output (v,r) as the signature
*
* verification:
*
* m = hash(Z, message);
* h = m XOR r
* verify25519(Y, v, h, P)
*
* confirm r == hash(Y)
*
* It would seem to me that it would be simpler to have the signer directly do
* h = hash(m, Y) and send that to the recipient instead of r, who can verify
* the signature by checking h == hash(m, Y). If there are any problems with
* such a scheme, please let me know.
*
* Also, EC-KCDSA (like most DS algorithms) picks x random, which is a waste of
* perfectly good entropy, but does allow Y to be calculated in advance of (or
* parallel to) hashing the message.
*/
/* Signature generation primitive, calculates (x-h)s mod q
* v [out] signature value
* h [in] signature hash (of message, signature pub key, and context data)
* x [in] signature private key
* s [in] private key for signing
* returns true on success, false on failure (use different x or h)
*/
public static boolean sign(byte[] v, byte[] h, byte[] x, byte[] s) {
// v = (x - h) s mod q
int w, i;
byte[] h1 = new byte[32], x1 = new byte[32];
byte[] tmp1 = new byte[64];
byte[] tmp2 = new byte[64];
// Don't clobber the arguments, be nice!
cpy32(h1, h);
cpy32(x1, x);
// Reduce modulo group order
byte[] tmp3=new byte[32];
divmod(tmp3, h1, 32, ORDER, 32);
divmod(tmp3, x1, 32, ORDER, 32);
// v = x1 - h1
// If v is negative, add the group order to it to become positive.
// If v was already positive we don't have to worry about overflow
// when adding the order because v < ORDER and 2*ORDER < 2^256
mula_small(v, x1, 0, h1, 32, -1);
mula_small(v, v , 0, ORDER, 32, 1);
// tmp1 = (x-h)*s mod q
mula32(tmp1, v, s, 32, 1);
divmod(tmp2, tmp1, 64, ORDER, 32);
for (w = 0, i = 0; i < 32; i++)
w |= v[i] = tmp1[i];
return w != 0;
}
/* Signature verification primitive, calculates Y = vP + hG
* Y [out] signature public key
* v [in] signature value
* h [in] signature hash
* P [in] public key
*/
public static void verify(byte[] Y, byte[] v, byte[] h, byte[] P) {
/* Y = v abs(P) + h G */
byte[] d=new byte[32];
long10[]
p=new long10[]{new long10(),new long10()},
s=new long10[]{new long10(),new long10()},
yx=new long10[]{new long10(),new long10(),new long10()},
yz=new long10[]{new long10(),new long10(),new long10()},
t1=new long10[]{new long10(),new long10(),new long10()},
t2=new long10[]{new long10(),new long10(),new long10()};
int vi = 0, hi = 0, di = 0, nvh=0, i, j, k;
/* set p[0] to G and p[1] to P */
set(p[0], 9);
unpack(p[1], P);
/* set s[0] to P+G and s[1] to P-G */
/* s[0] = (Py^2 + Gy^2 - 2 Py Gy)/(Px - Gx)^2 - Px - Gx - 486662 */
/* s[1] = (Py^2 + Gy^2 + 2 Py Gy)/(Px - Gx)^2 - Px - Gx - 486662 */
x_to_y2(t1[0], t2[0], p[1]); /* t2[0] = Py^2 */
sqrt(t1[0], t2[0]); /* t1[0] = Py or -Py */
j = is_negative(t1[0]); /* ... check which */
t2[0]._0 += 39420360; /* t2[0] = Py^2 + Gy^2 */
mul(t2[1], BASE_2Y, t1[0]);/* t2[1] = 2 Py Gy or -2 Py Gy */
sub(t1[j], t2[0], t2[1]); /* t1[0] = Py^2 + Gy^2 - 2 Py Gy */
add(t1[1-j], t2[0], t2[1]);/* t1[1] = Py^2 + Gy^2 + 2 Py Gy */
cpy(t2[0], p[1]); /* t2[0] = Px */
t2[0]._0 -= 9; /* t2[0] = Px - Gx */
sqr(t2[1], t2[0]); /* t2[1] = (Px - Gx)^2 */
recip(t2[0], t2[1], 0); /* t2[0] = 1/(Px - Gx)^2 */
mul(s[0], t1[0], t2[0]); /* s[0] = t1[0]/(Px - Gx)^2 */
sub(s[0], s[0], p[1]); /* s[0] = t1[0]/(Px - Gx)^2 - Px */
s[0]._0 -= 9 + 486662; /* s[0] = X(P+G) */
mul(s[1], t1[1], t2[0]); /* s[1] = t1[1]/(Px - Gx)^2 */
sub(s[1], s[1], p[1]); /* s[1] = t1[1]/(Px - Gx)^2 - Px */
s[1]._0 -= 9 + 486662; /* s[1] = X(P-G) */
mul_small(s[0], s[0], 1); /* reduce s[0] */
mul_small(s[1], s[1], 1); /* reduce s[1] */
/* prepare the chain */
for (i = 0; i < 32; i++) {
vi = (vi >> 8) ^ (v[i] & 0xFF) ^ ((v[i] & 0xFF) << 1);
hi = (hi >> 8) ^ (h[i] & 0xFF) ^ ((h[i] & 0xFF) << 1);
nvh = ~(vi ^ hi);
di = (nvh & (di & 0x80) >> 7) ^ vi;
di ^= nvh & (di & 0x01) << 1;
di ^= nvh & (di & 0x02) << 1;
di ^= nvh & (di & 0x04) << 1;
di ^= nvh & (di & 0x08) << 1;
di ^= nvh & (di & 0x10) << 1;
di ^= nvh & (di & 0x20) << 1;
di ^= nvh & (di & 0x40) << 1;
d[i] = (byte)di;
}
di = ((nvh & (di & 0x80) << 1) ^ vi) >> 8;
/* initialize state */
set(yx[0], 1);
cpy(yx[1], p[di]);
cpy(yx[2], s[0]);
set(yz[0], 0);
set(yz[1], 1);
set(yz[2], 1);
/* y[0] is (even)P + (even)G
* y[1] is (even)P + (odd)G if current d-bit is 0
* y[1] is (odd)P + (even)G if current d-bit is 1
* y[2] is (odd)P + (odd)G
*/
vi = 0;
hi = 0;
/* and go for it! */
for (i = 32; i--!=0; ) {
vi = (vi << 8) | (v[i] & 0xFF);
hi = (hi << 8) | (h[i] & 0xFF);
di = (di << 8) | (d[i] & 0xFF);
for (j = 8; j--!=0; ) {
mont_prep(t1[0], t2[0], yx[0], yz[0]);
mont_prep(t1[1], t2[1], yx[1], yz[1]);
mont_prep(t1[2], t2[2], yx[2], yz[2]);
k = ((vi ^ vi >> 1) >> j & 1)
+ ((hi ^ hi >> 1) >> j & 1);
mont_dbl(yx[2], yz[2], t1[k], t2[k], yx[0], yz[0]);
k = (di >> j & 2) ^ ((di >> j & 1) << 1);
mont_add(t1[1], t2[1], t1[k], t2[k], yx[1], yz[1],
p[di >> j & 1]);
mont_add(t1[2], t2[2], t1[0], t2[0], yx[2], yz[2],
s[((vi ^ hi) >> j & 2) >> 1]);
}
}
k = (vi & 1) + (hi & 1);
recip(t1[0], yz[k], 0);
mul(t1[1], yx[k], t1[0]);
pack(t1[1], Y);
}
public static boolean isCanonicalSignature(byte[] v) {
byte[] vCopy = java.util.Arrays.copyOfRange(v, 0, 32);
byte[] tmp = new byte[32];
divmod(tmp, vCopy, 32, ORDER, 32);
for (int i = 0; i < 32; i++){
if (v[i] != vCopy[i])
return false;
}
return true;
}
public static boolean isCanonicalPublicKey(byte[] publicKey) {
if ( publicKey.length != 32 ) {
return false;
}
long10 publicKeyUnpacked = new long10();
unpack(publicKeyUnpacked, publicKey);
byte[] publicKeyCopy = new byte[32];
pack(publicKeyUnpacked, publicKeyCopy);
for (int i = 0; i < 32; i++){
if (publicKeyCopy[i] != publicKey[i]) {
return false;
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////
/* sahn0:
* Using this class instead of long[10] to avoid bounds checks. */
private static final class long10 {
public long10() {}
public long10(
long _0, long _1, long _2, long _3, long _4,
long _5, long _6, long _7, long _8, long _9)
{
this._0=_0; this._1=_1; this._2=_2;
this._3=_3; this._4=_4; this._5=_5;
this._6=_6; this._7=_7; this._8=_8;
this._9=_9;
}
public long _0,_1,_2,_3,_4,_5,_6,_7,_8,_9;
}
/********************* radix 2^8 math *********************/
private static void cpy32(byte[] d, byte[] s) {
int i;
for (i = 0; i < 32; i++)
d[i] = s[i];
}
/* p[m..n+m-1] = q[m..n+m-1] + z * x */
/* n is the size of x */
/* n+m is the size of p and q */
private static int mula_small(byte[] p,byte[] q,int m,byte[] x,int n,int z) {
int v=0;
for (int i=0;i<n;++i) {
v+=(q[i+m] & 0xFF)+z*(x[i] & 0xFF);
p[i+m]=(byte)v;
v>>=8;
}
return v;
}
/* p += x * y * z where z is a small integer
* x is size 32, y is size t, p is size 32+t
* y is allowed to overlap with p+32 if you don't care about the upper half */
private static int mula32(byte[] p, byte[] x, byte[] y, int t, int z) {
final int n = 31;
int w = 0;
int i = 0;
for (; i < t; i++) {
int zy = z * (y[i] & 0xFF);
w += mula_small(p, p, i, x, n, zy) +
(p[i+n] & 0xFF) + zy * (x[n] & 0xFF);
p[i+n] = (byte)w;
w >>= 8;
}
p[i+n] = (byte)(w + (p[i+n] & 0xFF));
return w >> 8;
}
/* divide r (size n) by d (size t), returning quotient q and remainder r
* quotient is size n-t+1, remainder is size t
* requires t > 0 && d[t-1] != 0
* requires that r[-1] and d[-1] are valid memory locations
* q may overlap with r+t */
private static void divmod(byte[] q, byte[] r, int n, byte[] d, int t) {
int rn = 0;
int dt = ((d[t-1] & 0xFF) << 8);
if (t>1) {
dt |= (d[t-2] & 0xFF);
}
while (n-- >= t) {
int z = (rn << 16) | ((r[n] & 0xFF) << 8);
if (n>0) {
z |= (r[n-1] & 0xFF);
}
z/=dt;
rn += mula_small(r,r, n-t+1, d, t, -z);
q[n-t+1] = (byte)((z + rn) & 0xFF); /* rn is 0 or -1 (underflow) */
mula_small(r,r, n-t+1, d, t, -rn);
rn = (r[n] & 0xFF);
r[n] = 0;
}
r[t-1] = (byte)rn;
}
private static int numsize(byte[] x,int n) {
while (n--!=0 && x[n]==0)
;
return n+1;
}
/* Returns x if a contains the gcd, y if b.
* Also, the returned buffer contains the inverse of a mod b,
* as 32-byte signed.
* x and y must have 64 bytes space for temporary use.
* requires that a[-1] and b[-1] are valid memory locations */
private static byte[] egcd32(byte[] x,byte[] y,byte[] a,byte[] b) {
int an, bn = 32, qn, i;
for (i = 0; i < 32; i++)
x[i] = y[i] = 0;
x[0] = 1;
an = numsize(a, 32);
if (an==0)
return y; /* division by zero */
byte[] temp=new byte[32];
while (true) {
qn = bn - an + 1;
divmod(temp, b, bn, a, an);
bn = numsize(b, bn);
if (bn==0)
return x;
mula32(y, x, temp, qn, -1);
qn = an - bn + 1;
divmod(temp, a, an, b, bn);
an = numsize(a, an);
if (an==0)
return y;
mula32(x, y, temp, qn, -1);
}
}
/********************* radix 2^25.5 GF(2^255-19) math *********************/
private static final int P25=33554431; /* (1 << 25) - 1 */
private static final int P26=67108863; /* (1 << 26) - 1 */
/* Convert to internal format from little-endian byte format */
private static void unpack(long10 x,byte[] m) {
x._0 = ((m[0] & 0xFF)) | ((m[1] & 0xFF))<<8 |
(m[2] & 0xFF)<<16 | ((m[3] & 0xFF)& 3)<<24;
x._1 = ((m[3] & 0xFF)&~ 3)>>2 | (m[4] & 0xFF)<<6 |
(m[5] & 0xFF)<<14 | ((m[6] & 0xFF)& 7)<<22;
x._2 = ((m[6] & 0xFF)&~ 7)>>3 | (m[7] & 0xFF)<<5 |
(m[8] & 0xFF)<<13 | ((m[9] & 0xFF)&31)<<21;
x._3 = ((m[9] & 0xFF)&~31)>>5 | (m[10] & 0xFF)<<3 |
(m[11] & 0xFF)<<11 | ((m[12] & 0xFF)&63)<<19;
x._4 = ((m[12] & 0xFF)&~63)>>6 | (m[13] & 0xFF)<<2 |
(m[14] & 0xFF)<<10 | (m[15] & 0xFF) <<18;
x._5 = (m[16] & 0xFF) | (m[17] & 0xFF)<<8 |
(m[18] & 0xFF)<<16 | ((m[19] & 0xFF)& 1)<<24;
x._6 = ((m[19] & 0xFF)&~ 1)>>1 | (m[20] & 0xFF)<<7 |
(m[21] & 0xFF)<<15 | ((m[22] & 0xFF)& 7)<<23;
x._7 = ((m[22] & 0xFF)&~ 7)>>3 | (m[23] & 0xFF)<<5 |
(m[24] & 0xFF)<<13 | ((m[25] & 0xFF)&15)<<21;
x._8 = ((m[25] & 0xFF)&~15)>>4 | (m[26] & 0xFF)<<4 |
(m[27] & 0xFF)<<12 | ((m[28] & 0xFF)&63)<<20;
x._9 = ((m[28] & 0xFF)&~63)>>6 | (m[29] & 0xFF)<<2 |
(m[30] & 0xFF)<<10 | (m[31] & 0xFF) <<18;
}
/* Check if reduced-form input >= 2^255-19 */
private static boolean is_overflow(long10 x) {
return (
((x._0 > P26-19)) &&
((x._1 & x._3 & x._5 & x._7 & x._9) == P25) &&
((x._2 & x._4 & x._6 & x._8) == P26)
) || (x._9 > P25);
}
/* Convert from internal format to little-endian byte format. The
* number must be in a reduced form which is output by the following ops:
* unpack, mul, sqr
* set -- if input in range 0 .. P25
* If you're unsure if the number is reduced, first multiply it by 1. */
private static void pack(long10 x,byte[] m) {
int ld = 0, ud = 0;
long t;
ld = (is_overflow(x)?1:0) - ((x._9 < 0)?1:0);
ud = ld * -(P25+1);
ld *= 19;
t = ld + x._0 + (x._1 << 26);
m[ 0] = (byte)t;
m[ 1] = (byte)(t >> 8);
m[ 2] = (byte)(t >> 16);
m[ 3] = (byte)(t >> 24);
t = (t >> 32) + (x._2 << 19);
m[ 4] = (byte)t;
m[ 5] = (byte)(t >> 8);
m[ 6] = (byte)(t >> 16);
m[ 7] = (byte)(t >> 24);
t = (t >> 32) + (x._3 << 13);
m[ 8] = (byte)t;
m[ 9] = (byte)(t >> 8);
m[10] = (byte)(t >> 16);
m[11] = (byte)(t >> 24);
t = (t >> 32) + (x._4 << 6);
m[12] = (byte)t;
m[13] = (byte)(t >> 8);
m[14] = (byte)(t >> 16);
m[15] = (byte)(t >> 24);
t = (t >> 32) + x._5 + (x._6 << 25);
m[16] = (byte)t;
m[17] = (byte)(t >> 8);
m[18] = (byte)(t >> 16);
m[19] = (byte)(t >> 24);
t = (t >> 32) + (x._7 << 19);
m[20] = (byte)t;
m[21] = (byte)(t >> 8);
m[22] = (byte)(t >> 16);
m[23] = (byte)(t >> 24);
t = (t >> 32) + (x._8 << 12);
m[24] = (byte)t;
m[25] = (byte)(t >> 8);
m[26] = (byte)(t >> 16);
m[27] = (byte)(t >> 24);
t = (t >> 32) + ((x._9 + ud) << 6);
m[28] = (byte)t;
m[29] = (byte)(t >> 8);
m[30] = (byte)(t >> 16);
m[31] = (byte)(t >> 24);
}
/* Copy a number */
private static void cpy(long10 out, long10 in) {
out._0=in._0; out._1=in._1;
out._2=in._2; out._3=in._3;
out._4=in._4; out._5=in._5;
out._6=in._6; out._7=in._7;
out._8=in._8; out._9=in._9;
}
/* Set a number to value, which must be in range -185861411 .. 185861411 */
private static void set(long10 out, int in) {
out._0=in; out._1=0;
out._2=0; out._3=0;
out._4=0; out._5=0;
out._6=0; out._7=0;
out._8=0; out._9=0;
}
/* Add/subtract two numbers. The inputs must be in reduced form, and the
* output isn't, so to do another addition or subtraction on the output,
* first multiply it by one to reduce it. */
private static void add(long10 xy, long10 x, long10 y) {
xy._0 = x._0 + y._0; xy._1 = x._1 + y._1;
xy._2 = x._2 + y._2; xy._3 = x._3 + y._3;
xy._4 = x._4 + y._4; xy._5 = x._5 + y._5;
xy._6 = x._6 + y._6; xy._7 = x._7 + y._7;
xy._8 = x._8 + y._8; xy._9 = x._9 + y._9;
}
private static void sub(long10 xy, long10 x, long10 y) {
xy._0 = x._0 - y._0; xy._1 = x._1 - y._1;
xy._2 = x._2 - y._2; xy._3 = x._3 - y._3;
xy._4 = x._4 - y._4; xy._5 = x._5 - y._5;
xy._6 = x._6 - y._6; xy._7 = x._7 - y._7;
xy._8 = x._8 - y._8; xy._9 = x._9 - y._9;
}
/* Multiply a number by a small integer in range -185861411 .. 185861411.
* The output is in reduced form, the input x need not be. x and xy may point
* to the same buffer. */
private static long10 mul_small(long10 xy, long10 x, long y) {
long t;
t = (x._8*y);
xy._8 = (t & ((1 << 26) - 1));
t = (t >> 26) + (x._9*y);
xy._9 = (t & ((1 << 25) - 1));
t = 19 * (t >> 25) + (x._0*y);
xy._0 = (t & ((1 << 26) - 1));
t = (t >> 26) + (x._1*y);
xy._1 = (t & ((1 << 25) - 1));
t = (t >> 25) + (x._2*y);
xy._2 = (t & ((1 << 26) - 1));
t = (t >> 26) + (x._3*y);
xy._3 = (t & ((1 << 25) - 1));
t = (t >> 25) + (x._4*y);
xy._4 = (t & ((1 << 26) - 1));
t = (t >> 26) + (x._5*y);
xy._5 = (t & ((1 << 25) - 1));
t = (t >> 25) + (x._6*y);
xy._6 = (t & ((1 << 26) - 1));
t = (t >> 26) + (x._7*y);
xy._7 = (t & ((1 << 25) - 1));
t = (t >> 25) + xy._8;
xy._8 = (t & ((1 << 26) - 1));
xy._9 += (t >> 26);
return xy;
}
/* Multiply two numbers. The output is in reduced form, the inputs need not
* be. */
private static long10 mul(long10 xy, long10 x, long10 y) {
/* sahn0:
* Using local variables to avoid class access.
* This seem to improve performance a bit...
*/
long
x_0=x._0,x_1=x._1,x_2=x._2,x_3=x._3,x_4=x._4,
x_5=x._5,x_6=x._6,x_7=x._7,x_8=x._8,x_9=x._9;
long
y_0=y._0,y_1=y._1,y_2=y._2,y_3=y._3,y_4=y._4,
y_5=y._5,y_6=y._6,y_7=y._7,y_8=y._8,y_9=y._9;
long t;
t = (x_0*y_8) + (x_2*y_6) + (x_4*y_4) + (x_6*y_2) +
(x_8*y_0) + 2 * ((x_1*y_7) + (x_3*y_5) +
(x_5*y_3) + (x_7*y_1)) + 38 *
(x_9*y_9);
xy._8 = (t & ((1 << 26) - 1));
t = (t >> 26) + (x_0*y_9) + (x_1*y_8) + (x_2*y_7) +
(x_3*y_6) + (x_4*y_5) + (x_5*y_4) +
(x_6*y_3) + (x_7*y_2) + (x_8*y_1) +
(x_9*y_0);
xy._9 = (t & ((1 << 25) - 1));
t = (x_0*y_0) + 19 * ((t >> 25) + (x_2*y_8) + (x_4*y_6)
+ (x_6*y_4) + (x_8*y_2)) + 38 *
((x_1*y_9) + (x_3*y_7) + (x_5*y_5) +
(x_7*y_3) + (x_9*y_1));
xy._0 = (t & ((1 << 26) - 1));
t = (t >> 26) + (x_0*y_1) + (x_1*y_0) + 19 * ((x_2*y_9)
+ (x_3*y_8) + (x_4*y_7) + (x_5*y_6) +
(x_6*y_5) + (x_7*y_4) + (x_8*y_3) +
(x_9*y_2));
xy._1 = (t & ((1 << 25) - 1));
t = (t >> 25) + (x_0*y_2) + (x_2*y_0) + 19 * ((x_4*y_8)
+ (x_6*y_6) + (x_8*y_4)) + 2 * (x_1*y_1)
+ 38 * ((x_3*y_9) + (x_5*y_7) +
(x_7*y_5) + (x_9*y_3));
xy._2 = (t & ((1 << 26) - 1));
t = (t >> 26) + (x_0*y_3) + (x_1*y_2) + (x_2*y_1) +
(x_3*y_0) + 19 * ((x_4*y_9) + (x_5*y_8) +
(x_6*y_7) + (x_7*y_6) +
(x_8*y_5) + (x_9*y_4));
xy._3 = (t & ((1 << 25) - 1));
t = (t >> 25) + (x_0*y_4) + (x_2*y_2) + (x_4*y_0) + 19 *
((x_6*y_8) + (x_8*y_6)) + 2 * ((x_1*y_3) +
(x_3*y_1)) + 38 *
((x_5*y_9) + (x_7*y_7) + (x_9*y_5));
xy._4 = (t & ((1 << 26) - 1));
t = (t >> 26) + (x_0*y_5) + (x_1*y_4) + (x_2*y_3) +
(x_3*y_2) + (x_4*y_1) + (x_5*y_0) + 19 *
((x_6*y_9) + (x_7*y_8) + (x_8*y_7) +
(x_9*y_6));
xy._5 = (t & ((1 << 25) - 1));
t = (t >> 25) + (x_0*y_6) + (x_2*y_4) + (x_4*y_2) +
(x_6*y_0) + 19 * (x_8*y_8) + 2 * ((x_1*y_5) +
(x_3*y_3) + (x_5*y_1)) + 38 *
((x_7*y_9) + (x_9*y_7));
xy._6 = (t & ((1 << 26) - 1));
t = (t >> 26) + (x_0*y_7) + (x_1*y_6) + (x_2*y_5) +
(x_3*y_4) + (x_4*y_3) + (x_5*y_2) +
(x_6*y_1) + (x_7*y_0) + 19 * ((x_8*y_9) +
(x_9*y_8));
xy._7 = (t & ((1 << 25) - 1));
t = (t >> 25) + xy._8;
xy._8 = (t & ((1 << 26) - 1));
xy._9 += (t >> 26);
return xy;
}
/* Square a number. Optimization of mul25519(x2, x, x) */
private static long10 sqr(long10 x2, long10 x) {
long
x_0=x._0,x_1=x._1,x_2=x._2,x_3=x._3,x_4=x._4,
x_5=x._5,x_6=x._6,x_7=x._7,x_8=x._8,x_9=x._9;
long t;
t = (x_4*x_4) + 2 * ((x_0*x_8) + (x_2*x_6)) + 38 *
(x_9*x_9) + 4 * ((x_1*x_7) + (x_3*x_5));
x2._8 = (t & ((1 << 26) - 1));
t = (t >> 26) + 2 * ((x_0*x_9) + (x_1*x_8) + (x_2*x_7) +
(x_3*x_6) + (x_4*x_5));
x2._9 = (t & ((1 << 25) - 1));
t = 19 * (t >> 25) + (x_0*x_0) + 38 * ((x_2*x_8) +
(x_4*x_6) + (x_5*x_5)) + 76 * ((x_1*x_9)
+ (x_3*x_7));
x2._0 = (t & ((1 << 26) - 1));
t = (t >> 26) + 2 * (x_0*x_1) + 38 * ((x_2*x_9) +
(x_3*x_8) + (x_4*x_7) + (x_5*x_6));
x2._1 = (t & ((1 << 25) - 1));
t = (t >> 25) + 19 * (x_6*x_6) + 2 * ((x_0*x_2) +
(x_1*x_1)) + 38 * (x_4*x_8) + 76 *
((x_3*x_9) + (x_5*x_7));
x2._2 = (t & ((1 << 26) - 1));
t = (t >> 26) + 2 * ((x_0*x_3) + (x_1*x_2)) + 38 *
((x_4*x_9) + (x_5*x_8) + (x_6*x_7));
x2._3 = (t & ((1 << 25) - 1));
t = (t >> 25) + (x_2*x_2) + 2 * (x_0*x_4) + 38 *
((x_6*x_8) + (x_7*x_7)) + 4 * (x_1*x_3) + 76 *
(x_5*x_9);
x2._4 = (t & ((1 << 26) - 1));
t = (t >> 26) + 2 * ((x_0*x_5) + (x_1*x_4) + (x_2*x_3))
+ 38 * ((x_6*x_9) + (x_7*x_8));
x2._5 = (t & ((1 << 25) - 1));
t = (t >> 25) + 19 * (x_8*x_8) + 2 * ((x_0*x_6) +
(x_2*x_4) + (x_3*x_3)) + 4 * (x_1*x_5) +
76 * (x_7*x_9);
x2._6 = (t & ((1 << 26) - 1));
t = (t >> 26) + 2 * ((x_0*x_7) + (x_1*x_6) + (x_2*x_5) +
(x_3*x_4)) + 38 * (x_8*x_9);
x2._7 = (t & ((1 << 25) - 1));
t = (t >> 25) + x2._8;
x2._8 = (t & ((1 << 26) - 1));
x2._9 += (t >> 26);
return x2;
}
/* Calculates a reciprocal. The output is in reduced form, the inputs need not
* be. Simply calculates y = x^(p-2) so it's not too fast. */
/* When sqrtassist is true, it instead calculates y = x^((p-5)/8) */
private static void recip(long10 y, long10 x, int sqrtassist) {
long10
t0=new long10(),
t1=new long10(),
t2=new long10(),
t3=new long10(),
t4=new long10();
int i;
/* the chain for x^(2^255-21) is straight from djb's implementation */
sqr(t1, x); /* 2 == 2 * 1 */
sqr(t2, t1); /* 4 == 2 * 2 */
sqr(t0, t2); /* 8 == 2 * 4 */
mul(t2, t0, x); /* 9 == 8 + 1 */
mul(t0, t2, t1); /* 11 == 9 + 2 */
sqr(t1, t0); /* 22 == 2 * 11 */
mul(t3, t1, t2); /* 31 == 22 + 9
== 2^5 - 2^0 */
sqr(t1, t3); /* 2^6 - 2^1 */
sqr(t2, t1); /* 2^7 - 2^2 */
sqr(t1, t2); /* 2^8 - 2^3 */
sqr(t2, t1); /* 2^9 - 2^4 */
sqr(t1, t2); /* 2^10 - 2^5 */
mul(t2, t1, t3); /* 2^10 - 2^0 */
sqr(t1, t2); /* 2^11 - 2^1 */
sqr(t3, t1); /* 2^12 - 2^2 */
for (i = 1; i < 5; i++) {
sqr(t1, t3);
sqr(t3, t1);
} /* t3 */ /* 2^20 - 2^10 */
mul(t1, t3, t2); /* 2^20 - 2^0 */
sqr(t3, t1); /* 2^21 - 2^1 */
sqr(t4, t3); /* 2^22 - 2^2 */
for (i = 1; i < 10; i++) {
sqr(t3, t4);
sqr(t4, t3);
} /* t4 */ /* 2^40 - 2^20 */
mul(t3, t4, t1); /* 2^40 - 2^0 */
for (i = 0; i < 5; i++) {
sqr(t1, t3);
sqr(t3, t1);
} /* t3 */ /* 2^50 - 2^10 */
mul(t1, t3, t2); /* 2^50 - 2^0 */
sqr(t2, t1); /* 2^51 - 2^1 */
sqr(t3, t2); /* 2^52 - 2^2 */
for (i = 1; i < 25; i++) {
sqr(t2, t3);
sqr(t3, t2);
} /* t3 */ /* 2^100 - 2^50 */
mul(t2, t3, t1); /* 2^100 - 2^0 */
sqr(t3, t2); /* 2^101 - 2^1 */
sqr(t4, t3); /* 2^102 - 2^2 */
for (i = 1; i < 50; i++) {
sqr(t3, t4);
sqr(t4, t3);
} /* t4 */ /* 2^200 - 2^100 */
mul(t3, t4, t2); /* 2^200 - 2^0 */
for (i = 0; i < 25; i++) {
sqr(t4, t3);
sqr(t3, t4);
} /* t3 */ /* 2^250 - 2^50 */
mul(t2, t3, t1); /* 2^250 - 2^0 */
sqr(t1, t2); /* 2^251 - 2^1 */
sqr(t2, t1); /* 2^252 - 2^2 */
if (sqrtassist!=0) {
mul(y, x, t2); /* 2^252 - 3 */
} else {
sqr(t1, t2); /* 2^253 - 2^3 */
sqr(t2, t1); /* 2^254 - 2^4 */
sqr(t1, t2); /* 2^255 - 2^5 */
mul(y, t1, t0); /* 2^255 - 21 */
}
}
/* checks if x is "negative", requires reduced input */
private static int is_negative(long10 x) {
return (int)(((is_overflow(x) || (x._9 < 0))?1:0) ^ (x._0 & 1));
}
/* a square root */
private static void sqrt(long10 x, long10 u) {
long10 v=new long10(), t1=new long10(), t2=new long10();
add(t1, u, u); /* t1 = 2u */
recip(v, t1, 1); /* v = (2u)^((p-5)/8) */
sqr(x, v); /* x = v^2 */
mul(t2, t1, x); /* t2 = 2uv^2 */
t2._0--; /* t2 = 2uv^2-1 */
mul(t1, v, t2); /* t1 = v(2uv^2-1) */
mul(x, u, t1); /* x = uv(2uv^2-1) */
}
/********************* Elliptic curve *********************/
/* y^2 = x^3 + 486662 x^2 + x over GF(2^255-19) */
/* t1 = ax + az
* t2 = ax - az */
private static void mont_prep(long10 t1, long10 t2, long10 ax, long10 az) {
add(t1, ax, az);
sub(t2, ax, az);
}
/* A = P + Q where
* X(A) = ax/az
* X(P) = (t1+t2)/(t1-t2)
* X(Q) = (t3+t4)/(t3-t4)
* X(P-Q) = dx
* clobbers t1 and t2, preserves t3 and t4 */
private static void mont_add(long10 t1, long10 t2, long10 t3, long10 t4,long10 ax, long10 az, long10 dx) {
mul(ax, t2, t3);
mul(az, t1, t4);
add(t1, ax, az);
sub(t2, ax, az);
sqr(ax, t1);
sqr(t1, t2);
mul(az, t1, dx);
}
/* B = 2 * Q where
* X(B) = bx/bz
* X(Q) = (t3+t4)/(t3-t4)
* clobbers t1 and t2, preserves t3 and t4 */
private static void mont_dbl(long10 t1, long10 t2, long10 t3, long10 t4,long10 bx, long10 bz) {
sqr(t1, t3);
sqr(t2, t4);
mul(bx, t1, t2);
sub(t2, t1, t2);
mul_small(bz, t2, 121665);
add(t1, t1, bz);
mul(bz, t1, t2);
}
/* Y^2 = X^3 + 486662 X^2 + X
* t is a temporary */
private static void x_to_y2(long10 t, long10 y2, long10 x) {
sqr(t, x);
mul_small(y2, x, 486662);
add(t, t, y2);
t._0++;
mul(y2, t, x);
}
/* P = kG and s = sign(P)/k */
private static void core(byte[] Px, byte[] s, byte[] k, byte[] Gx) {
long10
dx=new long10(),
t1=new long10(),
t2=new long10(),
t3=new long10(),
t4=new long10();
long10[]
x=new long10[]{new long10(),new long10()},
z=new long10[]{new long10(),new long10()};
int i, j;
/* unpack the base */
if (Gx!=null)
unpack(dx, Gx);
else
set(dx, 9);
/* 0G = point-at-infinity */
set(x[0], 1);
set(z[0], 0);
/* 1G = G */
cpy(x[1], dx);
set(z[1], 1);
for (i = 32; i--!=0; ) {
if (i==0) {
i=0;
}
for (j = 8; j--!=0; ) {
/* swap arguments depending on bit */
int bit1 = (k[i] & 0xFF) >> j & 1;
int bit0 = ~(k[i] & 0xFF) >> j & 1;
long10 ax = x[bit0];
long10 az = z[bit0];
long10 bx = x[bit1];
long10 bz = z[bit1];
/* a' = a + b */
/* b' = 2 b */
mont_prep(t1, t2, ax, az);
mont_prep(t3, t4, bx, bz);
mont_add(t1, t2, t3, t4, ax, az, dx);
mont_dbl(t1, t2, t3, t4, bx, bz);
}
}
recip(t1, z[0], 0);
mul(dx, x[0], t1);
pack(dx, Px);
/* calculate s such that s abs(P) = G .. assumes G is std base point */
if (s!=null) {
x_to_y2(t2, t1, dx); /* t1 = Py^2 */
recip(t3, z[1], 0); /* where Q=P+G ... */
mul(t2, x[1], t3); /* t2 = Qx */
add(t2, t2, dx); /* t2 = Qx + Px */
t2._0 += 9 + 486662; /* t2 = Qx + Px + Gx + 486662 */
dx._0 -= 9; /* dx = Px - Gx */
sqr(t3, dx); /* t3 = (Px - Gx)^2 */
mul(dx, t2, t3); /* dx = t2 (Px - Gx)^2 */
sub(dx, dx, t1); /* dx = t2 (Px - Gx)^2 - Py^2 */
dx._0 -= 39420360; /* dx = t2 (Px - Gx)^2 - Py^2 - Gy^2 */
mul(t1, dx, BASE_R2Y); /* t1 = -Py */
if (is_negative(t1)!=0) /* sign is 1, so just copy */
cpy32(s, k);
else /* sign is -1, so negate */
mula_small(s, ORDER_TIMES_8, 0, k, 32, -1);
/* reduce s mod q
* (is this needed? do it just in case, it's fast anyway) */
//divmod((dstptr) t1, s, 32, order25519, 32);
/* take reciprocal of s mod q */
byte[] temp1=new byte[32];
byte[] temp2=new byte[64];
byte[] temp3=new byte[64];
cpy32(temp1, ORDER);
cpy32(s, egcd32(temp2, temp3, s, temp1));
if ((s[31] & 0x80)!=0)
mula_small(s, s, 0, ORDER, 32, 1);
}
}
/* smallest multiple of the order that's >= 2^255 */
private static final byte[] ORDER_TIMES_8 = {
(byte)104, (byte)159, (byte)174, (byte)231,
(byte)210, (byte)24, (byte)147, (byte)192,
(byte)178, (byte)230, (byte)188, (byte)23,
(byte)245, (byte)206, (byte)247, (byte)166,
(byte)0, (byte)0, (byte)0, (byte)0,
(byte)0, (byte)0, (byte)0, (byte)0,
(byte)0, (byte)0, (byte)0, (byte)0,
(byte)0, (byte)0, (byte)0, (byte)128
};
/* constants 2Gy and 1/(2Gy) */
private static final long10 BASE_2Y = new long10(
39999547, 18689728, 59995525, 1648697, 57546132,
24010086, 19059592, 5425144, 63499247, 16420658
);
private static final long10 BASE_R2Y = new long10(
5744, 8160848, 4790893, 13779497, 35730846,
12541209, 49101323, 30047407, 40071253, 6226132
);
}